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Abstract

Neural Radiance Fields (NeRFs) have proven to be pow-
erful 3D representations, capable of high quality novel view
synthesis of complex scenes. While NeRFs have been ap-
plied to graphics, vision, and robotics, problems with slow
rendering speed and characteristic visual artifacts prevent
adoption in many cases. In this work, we investigate com-
bining an autoencoder (AE) with a NeRF, in which features
(instead of colours) are rendered and then convolutionally
decoded. The resulting latent-space NeRF can produce
novel views with higher quality than standard colour-space
NeRFs, as the AE can correct certain visual artifacts, while
rendering three times faster. Further, we can control the
tradeoff between efficiency and image quality by shrinking
the AE architecture, achieving over 13 times faster render-
ing with only a small drop in performance.

1. Introduction

Neural rendering techniques [70] continue to grow in im-
portance, particularly Neural Radiance Fields [42] (NeRFs),
which achieve state-of-the-art performance in novel view
synthesis and 3D-from-2D reconstruction. As a result,
NeRFs have been utilized for a variety of applications,
not only in content creation [22, 88, 44, 43], but also for
many robotics tasks, including 6-DoF tracking [81], pose
estimation [29], surface recognition [52] or reconstruc-
tion [37], motion planning [49, 35, 1], reinforcement learn-
ing [14, 60], tactile sensing [93], and photorealistic sim-
ulation [66]. However, slow rendering and the qualitative
artifacts of NeRFs impede further use cases in production.

To render a single pixel, one major bottleneck is the
need for multiple forward passes of a multilayer percep-
tron (MLP). Replacing or augmenting the MLP with alter-
native representations (e.g., voxel grids [57] or feature hash-
tables [47]) has been used to improve both training and in-
ference speed. To reduce test-time rendering speed specifi-
cally, baking NeRFs into other primitive representations has
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Figure 1. An overview of the ReLS-NeRF training loop. The
radiance (colour) field is fit to RGB captures, as in the standard
NeRF [42]. Given camera parameters, ⇧, ReLS-NeRF renders
feature maps in the latent Z-space defined by a convolutional au-
toencoder (AE), D �E, for which arbitrary views can be decoded
into image space. The discrepancy between the decoded rendered
latents and the corresponding images (from a colour-space NeRF
or real images) enables training the Z-space NeRF and the AE.

been a popular approach [25, 11, 55]. Separately, alterna-
tive sampling methods [68, 5, 3, 4], different radiance mod-
els [74], and scene contraction functions [89, 4] have been
proposed to reduce artifacts (e.g., “floaters” [80]). Despite
these advancements, NeRFs still suffer from visual flaws
and low rendering frame-rates.

In this paper, we propose an orthogonal approach for im-
proving test-time speed and visual quality of NeRFs. By
leveraging convolutional autoencoders (AEs), we can de-
fine a “NeRF” operating in latent feature space (rather than
colour space), such that low-resolution latent renders can be
decoded to high-resolution RGB renders (see Fig. 1). This
offloads expensive MLP-based rendering computations to
the low-cost AE. Thus, we extend the standard NeRF ar-
chitecture to return point-wise latent vectors, in addition to
colors and densities. As it is used for scene reconstruction,
we denote the resulting combined field a Reconstructive



Latent-Space NeRF (ReLS-NeRF). Beyond faster render-
ing, the AE can also act as an image prior, fixing some of the
artifacts associated with direct NeRF renders. Empirically,
our model is able to render views three times faster, while
improving in multiple image and video quality metrics. Fur-
ther, we demonstrate a tradeoff between visual quality and
rendering efficiency: by reducing the AE size, we obtain a
13-fold speed-up, with only a small drop in quality.

2. Related Work

NeRF efficiency. While NeRFs produce results of extraor-
dinary quality, the speed of fitting (training) and rendering
(inference) remains a bottleneck for adoption in a variety
of applications (e.g., [4, 66, 72]). This has prompted a
myriad of approaches to increasing their efficiency. Fea-
ture grids have proven effective in expediting fitting conver-
gence (e.g., [78, 63, 64, 5, 9, 10, 57, 47]). Other approaches
include utilizing depth [13], better initializations [67], and
pretraining conditional fields (e.g., [87, 79, 30]). Such
improvements can be readily utilized in our own frame-
work. Similarly, a number of methods have been proposed
to enhance the efficiency of the volume rendering opera-
tion, which relies on an expensive Monte Carlo integra-
tion involving many MLP calls per pixel. These include
architectural modifications [19, 76, 54, 36, 86], “baking”
(precomputing and storing network outputs) [25, 55], im-
proved sampling strategies [51, 16, 48, 38, 34], or alter-
ing the integration method itself [39, 83]. Finally, several
works eschew volume rendering itself. Several representa-
tions [61, 62, 85, 17, 2, 27] use only a single sample per
pixel, but struggle with geometric consistency and scala-
bility. Similarly, one can move to a mesh-based represen-
tation and use rasterization instead [11, 21, 77]; however,
this loses certain properties, such as amenability to further
optimization or differentiable neural editing. Though our
approach improves rendering efficiency, it is orthogonal to
these methods, as it reduces the number of MLP calls per
image by changing the output space of the NeRF itself.
Feature-space NeRFs. Other models have utilized neural
feature fields (NFFs), as opposed to “radiance” fields, where
rendering is altered to output learned features instead. Some
NFFs [71, 33] learn to produce the outputs of pretrained 2D
feature extractors; similarly, several works have considered
the use of language-related features [31, 6, 59] and other
segmentation signals [92, 91, 45, 44] to embed semantics
into the NFF. More closely related to our work are gen-
erative modelling NFFs that decode rendered features into
images via generative adversarial networks [20, 50, 84] or
diffusion models [40, 58, 8]. In contrast, this paper con-
siders the scene reconstruction problem, using a latent rep-
resentation potentially amenable to downstream tasks, and
investigates issues related to view consistency.

3. Methods

3.1. ReLS-NeRF Neural Architecture

Our model includes two neural modules: (i) a modified
NeRF, f , which outputs a latent vector (in addition to its
standard outputs), and (ii) an autoencoder (AE), with en-
coder and decoder networks, E and D.

We first extend the standard colour-density field of NeRF
to include a latent feature vector, z, via f(x, r) = (� 2
R+, c 2 [0, 1]3, z 2 Rn), where x and r represent the in-
put position and direction, and � and c represent the output
density and colour. We refer to the � and c fields as an
“RGB-NeRF”, to distinguish them from the latent compo-
nent of the ReLS-NeRF. Volume rendering is unchanged:
for a single feature at a pixel position, p, we use

Z(p) =

Z tmax

tmin

T (t)�(t)z(t) dt, (1)

to obtain the feature value at p, where T (t) is the transmit-
tance [65], and z(t) = z(x(t), r(t)) is obtained by sampling
the ray defined by p. For camera parameters ⇧, we denote
the latent image rendering function as R(⇧|f) = IZ(⇧),
where IZ [p] = Z(p). Replacing z(t) with c(t), for instance,
would render colour in the standard manner, giving a colour
image, IC(⇧) (that does not use z). To obtain a colour im-
age from IZ , we simply pass it to D; i.e., view synthesis is
simply bIC(⇧) = D(IZ(⇧)), which can be viewed as a form
of neural rendering (e.g., [50, 69, 15]). The benefit of us-
ing bIC is that significantly fewer pixels need to be rendered,
assuming D is an upsampler, compared to IC(⇧); it also
enables placing a prior on bIC by choosing D appropriately.

We considered two choices of AE: (i) the pretrained
VAE from Stable Diffusion [56], which we denote SD-VAE,
and (ii) a smaller residual block-based AE [23, 28] (R32,
when using a 32D latent space) that is randomly initialized.
Both encoders provide an 8⇥ downsampling of the image.

3.2. Fitting Process

Setup. As in the standard NeRF scenario, we expect only
a training set of multiview posed images, SI = {(Ii,⇧i)}i.
The optimization proceeds in three stages: (A) AE training,
(B) joint NeRF fitting, and (C) decoder fine-tuning.
AE training (A). The first phase simply trains (or fine-
tunes) the AE to reconstruct the training images of the
scenes, using the mean-squared error.
Joint NeRF fitting (B). In the second phase, we train the
RGB and Latent components of the NeRF in conjunction
with the decoder, D. Our total loss function,

LB = Lr + �dLd + �grLgr + Lp, (2)

consists of the standard RGB loss on random rays, Lr, the
DS-NeRF [13] depth loss, Ld, the geometry regularizing



distortion loss [4], Lgr, and a patch-based loss for training
the latent component, Lp. Given a posed image, (I,⇧),
the latter loss is simply the error between a sample patch,
P ⇠ I , and the corresponding rendered then decoded patch,

Lp = EP⇠I,(I,⇧)⇠SI
MSE(P, D(IZ(⇧))). (3)

Decoder fine-tuning (C). Finally, we fine-tune D, utiliz-
ing a combination of the multiview posed images, SI , and
renders from the RGB component of the ReLS-NeRF. First,
we sample random renders, eSI = {(IC(⇧s),⇧s) |⇧s ⇠
�(S⇧)}s, where �(S⇧) samples camera extrinsics by inter-
polation between a random triplet in S⇧. Optimizing

LC = ��(SI) + (1� �)�(eSI), (4)

where �(S) = E(I,⇧)⇠SMSE(I, bIC(⇧)) and � 2 [0, 1] is
a weight, distills information from the RGB-NeRF into the
latent renderer. Note that real training images, SI , are used;
hence, the RGB-NeRF is not a strict performance ceiling
(further, D has different generalization properties).

3.3. Implementation Details

We utilize the neural graphics primitives [47] architec-
ture, via the tiny-cuda-nn library [46]. All phases use
Adam [32]. Note that the loss gradient from the latent com-
ponent of the NeRF (i.e., from Lp) is not back-propagated
to the colour, c, and density, �, fields. Further, we use sepa-
rate features for the latent feature vector, z, and c, but render
with the same �. In other words, RGB-NeRF training is un-
affected by z. (See our appendix for further details.)

3.4. Evaluation Metrics

Pixelwise and perceptual distances. We measure perfor-
mance with novel view synthesis on held-out test views. In
addition to the standard pixelwise peak signal-to-noise ratio
(PSNR), we use perceptual losses to measure similarity as
well, including LPIPS [90] and DreamSim [18]. LPIPS pro-
vides more human-like responses to low-level distortions
(e.g., noise, small colour/spatial shifts), whereas DreamSim
is designed to be “mid-level” metric, better able to capture
large-scale and semantic differences than LPIPS (without
being as high-level as, e.g., CLIP-based metrics [53, 7, 75]).
Local consistency. When examining generative models of
NeRFs that use decoders, we can qualitatively see a “shim-
mering” effect in time (e.g., [50, 20]), which is also remi-
niscent of generative video model artifacts (e.g., [26, 24]).
This jittering appears related to local appearance inconsis-
tencies: since each z pixel corresponds to an RGB patch, as
⇧ changes, interpolating in z-space does not perfectly ap-
proximate the correct appearance changes. Since this flaw
is distinct from the artifacts observed in standard NeRFs,
we devise a simple metric to detect it: the Reprojective

Reference-based Reference-free
NeRF PSNR" LPIPS# DS# DoA" DoT" RCC"
RGB 23.52 0.37 1.18 80.2 72.9 25.6

Ours-SD 23.81 0.35 1.44 81.5 77.3 25.5
Ours-R32 23.37 0.40 1.71 76.4 74.3 25.3

Table 1. Test-view evaluation on eight LLFF scenes [41].
Reference-based metrics include PSNR, LPIPS [90], and Dream-
Sim (DS; ⇥10) [18]. For reference-free metrics, we use DOVER-
technical (DoT), DOVER-aesthetic (DoA), and our reprojective
colour consistency (RCC) measure, computed on rendered videos.
Different models (rows) correspond to the standard RGB NeRF,
the SDVAE-based ReLS-NeRF, and the R32-based ReLS-NeRF.
ReLS-NeRF-SDVAE outperforms the RGB-space NeRF on the
lower-level reference-based (PSNR and LPIPS) and reference-free
(DoT) metrics, but performs similarly on the more semantic met-
rics (DS and DoA). Our RCC metric, designed to detect the “shim-
mer” present in decoded (neural rendered) videos, detects slightly
more inconsistency with ReLS-NeRF. Using R32 reduces accu-
racy, but enables much faster rendering time (see Table 2).

Rendering
Time

Fitting Time
NeRF (A) (B) (C)
RGB 132.1s [1⇥] – 1h –

Ours-SD 43.1s [3⇥] 10m 2h 2.5h
Ours-R32 10.2s [13⇥] 40m 1.5h 1.5h

Table 2. Timings of inference (rendering a 120 frames) and fitting
for various NeRF types. Simply changing the decoder architec-
ture, D, trades off between efficiency and image quality. We mea-
sure the RGB-NeRF rendering time without the latent component.

Colour Consistency (RCC) metric. The RCC measures sud-
den changes in appearance as ⇧ changes, relying on the
NeRF geometry to obtain correspondences. Specifically, we
simply reproject one render, Ii, into the reference frame of
another, Ii+1, using the NeRF depth, Di, so

RCC = PSNR
⇣
Ei[MSE(Ii+1,ReprojDi,⇧i+1

Ii)]
⌘
, (5)

where Ii and Ii+1 are adjacent video frames. Notice that oc-
clusions and view-dependent lighting effects will confound
the RCC; however, these effects will (i) be relatively mini-
mal across adjacent frames and (ii) be shared for the same
scene, enabling it to be a fair comparative metric.
Video quality. As noted above, adding a temporal di-
mension can make certain artifacts more perceptually de-
tectable. We therefore applied a recent video quality metric,
DOVER [82], to NeRF-rendered videos. DOVER has two
components: DOVER-aesthetic (DoA), which focuses on
high-level semantics, and DOVER-technical (DoT), which
detects low-level distortions (e.g., blur and noise).

4. Discussion

Results. We display our evaluation in Table 1, as well
as timing measurements in Table 2, using the eight LLFF



RGB NeRF Ours-SDOurs-R32

Figure 2. Qualitative comparison of NeRF renders. In the zoomed insets, we show how ReLS-NeRF-SD fixes some of the artifacts of the
RGB-NeRF, despite being trained in part on its outputs. One can also see the slight blur incurred by using the faster R32 AE.

scenes [41]*, at 1008⇥756 resolution. We see that ReLS-
NeRF (i.e., decoding a rendered latent feature map) with
the SDVAE actually has superior novel view image qual-
ity, while having superior inference speed (three times
faster). In particular, the low-level metrics, including
PSNR, LPIPS, and DoT, prefer ReLS-NeRF-SD over the
standard colour NeRF. This is likely due to the fine-tuned
decoder fixing artifacts incurred by the colour NeRF, as can
be seen in Fig. 2. The higher-level, more semantic metrics
are more mixed: DreamSim prefers the RGB-NeRF, while
DoA slightly favours ReLS-NeRF-SD. Similarly, the RCC
slightly prefers the RGB-NeRF; though it is hard to see in
still images, ReLS-NeRF has temporal “jittering” artifacts,
which the RCC is designed to detect. We can also con-
trol the tradeoff between efficiency and quality by changing
the AE architecture: using R32 reduces inference time by
⇠92%, while decreasing test-view PSNR by only 0.15.

*Images in Fig. 1,2 available in LLFF [41] under a CC BY 3.0 License.

Ablations. We find that removing phase C is devastating to
ReLS-NeRF, causing PSNR to drop to 22.85 (SD) and 20.87
(R32). Since the SDVAE is pretrained, ablating phase A
has little effect with SD; however, doing so for R32 reduces
PSNR by 0.1. Note that the latter case trains the decoder,
D, alongside the NeRF and then alone, in phases B and C.
Conclusion. We have shown that ReLS-NeRF can im-
prove image quality, while being several times faster to
render. Further, we have demonstrated a tradeoff between
efficiency and quality, which can be controlled by the ar-
chitecture of the AE. Importantly, to obtain its speedup,
ReLS-NeRF does not “bake” the scene or transform to a
mesh; hence, e.g., it can be continually trained online in the
standard fashion. We expect useful future directions to in-
clude utilizing different AEs for task-specific biases, apply-
ing ReLS-NeRF for online learning, and better customizing
the rendering process to latent space rendering (e.g., using
a learned mapping instead of volume integration).

https://drive.google.com/drive/folders/1M-_Fdn4ajDa0CS8-iqejv0fQQeuonpKF
https://creativecommons.org/licenses/by/3.0
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